How To Tell the President the Facts

Gerald van Belle
Departments of Biostatistics, Environmental Health
University of Washington
Seattle, WA
Outline

Two parts:
I. Presentation to the president
II. Analysis of the presentation
Aim

Examine air pollution from ships in US harbors and on the seas
Recommend actions
What do we know?

Air pollution kills
More deaths this year from air pollution than AIDs
Air pollution down in the US
Marine sources will exceed land sources in the next ten years
Shipping produces one sixth of sulfur dioxide in world
International context

Shipping not covered by Kyoto protocols
International Maritime Association agreement in 1997 ineffective
National context

Populations particularly affected: near harbors
Example: Latino population surrounding the Los Angeles harbor system
Affected by diesel truck and ships
How Did We Get Here?

Effective control of land-based sources
Little control over marine sources
Available Options

Do not address problem

Costs:

1. Environmental
2. Human
3. Political
Available Options

Address problem
Costs:

1. Regulatory
2. Political
Recommendation

Address problem
Target: Reduce pollution from ships to levels below on-land sources
Actions

Low sulfur fuels
Mooring incentives
International action
II--Analysis of Presentation

1. Deep background
2. Mandated science
3. Risk assessment
4. Standard setting
5. Conclusion
1. Deep Background-1

SO\textsubscript{2} Emissions (European Union)

<table>
<thead>
<tr>
<th>Year</th>
<th>Land</th>
<th>Shipping</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>16.4*</td>
<td>2.0</td>
</tr>
<tr>
<td>2000</td>
<td>5.8</td>
<td>2.6</td>
</tr>
<tr>
<td>2010</td>
<td>3.9</td>
<td>2.8-3.3</td>
</tr>
</tbody>
</table>

* million tons
## 2. Deep Background-2

**SO\textsubscript{2} Content of fuels**

<table>
<thead>
<tr>
<th>Fuel</th>
<th>SO\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bunker fuel</td>
<td>3%</td>
</tr>
<tr>
<td>Gas oils</td>
<td>1%</td>
</tr>
<tr>
<td>EU 2008 objective</td>
<td>0.1%</td>
</tr>
</tbody>
</table>
1. Deep Background* - 3

<table>
<thead>
<tr>
<th></th>
<th>SO$_2$ Emission per ton-kilometer</th>
<th>SO$_2 \times 10^4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trucks (2000 standard)</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Large vessels (&gt;8000dwt)</td>
<td>2600</td>
<td></td>
</tr>
<tr>
<td>Medium (2000-8000dwt)</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>Small (&lt;2000dwt)</td>
<td>5100</td>
<td></td>
</tr>
</tbody>
</table>

*Acid News, 2, May 2003.
2. Mandated Science-1

Values

Science

Politics

Law
2. Mandated Science-2

Mandated science* as the intersection of:
1. Science: Effect of air pollution
2. Politics: Latino population
3. Law: Regulatory responsibility
4. Values: Social justice; international competitiveness; re-election;…; all of these

* Term introduced by L. Salter (1988)
2. Mandated Science-3

Characteristics of mandated science:

1. National support for research (NSF, NIH, …)

2. National compact: science is good, valid, altruistic; ultimate arbiter, …

3. Sole support for many scientists

4. Relatively unique to the US--compare with current situation in Russia
3. Risk Assessment Paradigm-1

A. RISK EVALUATION
   1. Hazard identification
   2. Dose response assessment
   3. Exposure assessment
   4. Risk characterization

B. RISK MANAGEMENT
3. Risk Assessment Paradigm-2

RISK EVALUATION

1. Hazard identification often haphazard
2. Dose response often based on animal studies; problems of extrapolation of animal to human
4. Risk characterization integrative, beginning to be steered more and more by value
3. Risk Assessment Paradigm-3

RISK MANAGEMENT
1. Scientists often leave the mandated science arena here.
2. Gets “dirty” that is, values become more prominent
3. Argument is that science defines options (or non-options) and that it’s the policy folks who need to implement.
4. Examples of risk management:
   International Whaling Commission
   Kyoto “accords”
   ....
   ....
4. “Logic of Science”-1


1. One of the first students of Ron Pyke!
2. Asserts that there are “three logical forms for establishing a proposition.”
4. “Logic of Science” - 2

Root’s argument

A. Logic of the syllogism
B. Logic of the physical sciences
   (repeatable events; a priori hypotheses)
C. Logic of the courtroom
   (non-repeatable events; ex post facto hypotheses)

AND: Logic of the courtroom less reliable than the logic of the physical sciences.
4. “Logic of Science”-3

Root’s example:

1. EPA report on passive smoking
2. Increased chance of lung cancer in non-smoking female resident of the US
3. Report based on a retrospective meta-analysis
4. “Logic of Science”-4

Root’s conclusions:

1. Logic of the physical sciences replaced by the logic of the courtroom
2. For example (acc to Root) susceptible populations chosen after the fact.
3. Therefore probability calculations are suspect
5. Conclusions

1. Communication always involves two or more parties--often with unequal science backgrounds.
2. Mandated science requires understanding and communication by scientists; forces wider context.
3. Risk analysis gets messy at the management level.
4. Root’s paper illustrates the necessity of understanding broad patterns of inference.
5. Science does not operate in value-free environment.
References
